
Fundamentals of Radio Communication

1 Introduction

Analog Radio

In a traditional analog radio, like a “Walkie-Talkie”, there is a physical chain of circuits which work to
process an incoming or outgoing signal. For a receiver, an antenna and front end collect and amplify an
incoming radio frequency (RF) signal. A local oscillator and mixer shift the desired station from its broadcast
frequency down to an intermediate frequency where filters can isolate it. A demodulator then recovers the
information (e.g. voice, music, etc.) and an audio amplifier drives a speaker. Every change to that radio’s
behavior lives in the physical circuits that make up the radio; if you want a different filter or new modulation
type, then the hardware must be redesigned.

Software-Defined Radio

A software-defined radio (SDR) keeps only the minimum analog front end and moves everything else into
code running on a computer. An analog-to-digital converter (ADC) samples, or measures, the RF signal and
turns it into a stream of numbers that can be processed with computers. Tuning, filtering, demodulation,
even entire modulation schemes become algorithms that operate on those samples. If you want to change
how the radio operates, all you have to do is update the software/algorithm. GNU Radio is a software that
allows you to easily build digital signal processing (DSP) systems by connecting together signal processing
blocks into a flowgraph.

In this lab we’ll take one more step by keeping the whole radio link inside the computer. Instead of sampling a
real RF signal, we generate and process it entirely in software. The “transmitter”, “channel”, and “receiver”
are just connected GNU Radio blocks, so nothing is radiated and no hardware needs wiring. The only
physical interfaces you’ll need are you computer’s audio devices, e.g. microphone in, headphones out.

2 GNU Radio Flowgraphs

Default rates: audio rate = 48000, samp rate = 192000 Start deviation: nbfm deviation = 5000Hz

Overview of the two-graph setup (ZMQ)

You will run two separate GNU Radio flowgraphs linked by ZeroMQ (ZMQ) at complex baseband. The
transmitter (TX) generates NBFM from your microphone and pushes complex IQ samples over the network;
the receiver (RX) pulls those samples, optionally adds impairments, demodulates, and plays audio.

TX flowgraph (block order)
Audio Source → Multiply Const (mic gain) → NBFM Transmit → ZMQ PUSH Sink

Settings: Audio Rate = 48000; Quadrature Rate = 192000; Max Deviation = 2000–7000 Hz; Tau = 0 µs (base
lab). In ZMQ PUSH Sink set Bind = On, Address = tcp://*:PORT (e.g. tcp://*:6001), High-Water-Mark
(HWM) = 25, Linger = 0. Do not use a Throttle block on TX when using ZMQ.

1



RX flowgraph (block order)
ZMQ PULL Source→ Channel Model (optional)→ NBFM Receive→ Multiply Const (volume)→ Audio

Sink

Settings: Quadrature Rate = 192000; Audio Rate = 48000; Tau = 0 µs. In ZMQ PULL Source set Bind =
Off, Address = tcp://TX IP:PORT (e.g. tcp://192.168.1.50:6001), HWM = 25.

Required variables (both graphs)
audio rate = 48000 samp rate = 192000 port = 6001 (unique per pair)
TX Address: tcp://*:${port} RX Address: tcp://TX IP:${port}

Instructions for use

Same-machine dry run Start the TX graph first with Address tcp://*:6001 and Bind = On. Start
the RX graph on the same machine with Address tcp://127.0.0.1:6001 and Bind = Off. Speak into the
mic; you should hear your voice with a small delay. If you have a frequency sink on RX, you should see
energy centered at 0 Hz that responds to speech.

Two-computer run Choose a unique port per team (e.g. 6001, 6002, . . . ). On TX, run with Bind = On
and Address tcp://*:PORT. Determine the TX IP address (Windows: ipconfig; macOS/Linux: ifconfig
or ip addr). On RX, set Address tcp://TX IP:PORT with Bind = Off, then run RX. Wear headphones on
RX.

Bring-up checklist (Checkpoint A)
Audio heard on RX RF spectrum active at 0 Hz (if plotted) Audio waveform visible (if plotted)

If silent: verify matching sample rates (48 k/192 k), TX binds and RX connects to the correct IP:PORT,
and OS firewalls allow Python on that port. Set mic gain and volume near 1.0–2.0.

B. Deviation vs. bandwidth (Carson)

Goal. Measure occupied bandwidth vs. deviation ∆f and compare to B ≈ 2(∆f + 3 kHz).

Set TX Max Deviation to 3, 5, and 7, one at a time. On RX, enable averaging in the frequency sink (if
present). While speaking steadily, estimate the main-lobe width down to roughly −20 dB.

∆f (kHz) Measured BW (kHz) Carson 2(∆f + 3) (kHz) Notes
3 12
5 16
7 20

B1 (1–2 sentences). Does measured bandwidth grow approximately linearly with ∆f? If it differs from
Carson, give one plausible reason (measurement threshold, speech spectrum, etc.).

Screenshots. Capture RF spectra for one low-∆f and one high-∆f case; label each with ∆f .

2 Earwicker et al. 2025



C. Mic gain and apparent over-deviation

Goal. Show how excessive input level widens the spectrum and degrades audio.

Sweep TX mic gain from ≈ 0.5 to 3.0 while keeping voice level constant. Listen for distortion and watch
spectral shoulders widen even if ∆f is unchanged.

C1 (1–2 sentences). Why can too much mic gain look like larger ∆f in the spectrum? What trade-off
did you hear?

D. Noise robustness

Goal. Observe FM’s gradual degradation with noise.

On RX, set Channel Model Noise Voltage to 0.00, 0.01, then 0.02. For each, note intelligibility and how the
spectrum fattens. Optionally, insert a Power Squelch (Complex) before NBFM Receive (threshold ≈ −60 dB,
α = 10−4, Gate = True) and toggle it.

D1 (2–3 sentences). At what noise level did speech become hard to follow? Why does FM fail gradually
rather than abruptly?

Screenshot. Capture an RF spectrum at your “noisy” setting; label with the Noise Voltage.

E. Carrier-frequency offset (CFO) tolerance

Goal. Explore mistuning tolerance.

On RX, set Channel Model Frequency Offset to 0, +200 Hz, −200 Hz, then ±800 Hz. Note when audio
becomes warbly or collapses.

E1 (1–2 sentences). Why is small CFO tolerable in FM? What finally breaks as CFO increases?

Options
Title: Narrowba...Transmitter

Author: ARISE -...I Institute

Output Language: Python

Generate Options: QT GUI

Variable
ID: audio_rate

Value: 48k

Variable
ID: fft_size

Value: 4.096k

QT GUI Range
ID: mic_gain

Label: Microphone Gain

Default Value: 1

Start: 0

Stop: 1

Step: 50m

Variable
ID: nbfm_deviation

Value: 5k

Variable
ID: samp_rate

Value: 192k

outin

NBFM Transmit
Audio Rate: 48k

Quadrature Rate: 192k

Tau: 75u

Max Deviation: 5k

Preemphasis High Corner Freq: -1

out
Audio Source

Sample Rate: 48k
outin

Multiply Const
Constant: 1

outin

Channel Model
Noise Voltage: 0

Frequency Offset: 0

Epsilon: 1

Taps: 1

Seed: 0

Block Tag Propagation: No

in

QT GUI Frequency Sink
Name: Transmit Spectrum

FFT Size: 4.096k

Center Frequency (Hz): 0

Bandwidth (Hz): 192k

in

QT GUI Time Sink
Name: Raw Microphone Audio

Number of Points: 4.096k

Sample Rate: 192k

Autoscale: No

in

ZMQ PUSH Sink
Address: tcp://127.0.0.1:6001

Timeout (msec): 100

Pass Tags: No

Connection: Bind

Figure 1: NBFM Virtual Transmitter.grc GNU Radio flowgraph.

3 Earwicker et al. 2025



Options
Title: Not titled yet

Author: jtear

Output Language: Python

Generate Options: QT GUI

Variable
ID: audio_rate

Value: 48k

Variable
ID: nbfm_deviation

Value: 5k

Variable
ID: samp_rate

Value: 192k

QT GUI Range
ID: volume

Label: Volume

Default Value: 1

Start: 0

Stop: 1

Step: 50m

outin

NBFM Receive
Audio Rate: 48k

Quadrature Rate: 192k

Tau: 75u

Max Deviation: 5k

in
Audio Sink

Sample Rate: 48k
outin

Multiply Const
Constant: 1

in

QT GUI Frequency Sink
Name: Receive Spectrum

FFT Size: 4.096k

Center Frequency (Hz): 0

Bandwidth (Hz): 48k

out

ZMQ PULL Source
Address: tcp://127.0.0.1:6001

Timeout (msec): 100

Pass Tags: No

Connection: Connect

Variable
ID: fft_size

Value: 4.096k

Figure 2: NBFM Virtual Receiver.grc GNU Radio flowgraph.

4 Earwicker et al. 2025


	Introduction
	GNU Radio Flowgraphs

