Fundamentals of Radio Communication

1 Introduction

Analog Radio

In a traditional analog radio, like a “Walkie-Talkie”, there is a physical chain of circuits which work to
process an incoming or outgoing signal. For a receiver, an antenna and front end collect and amplify an
incoming radio frequency (RF) signal. A local oscillator and mixer shift the desired station from its broadcast
frequency down to an intermediate frequency where filters can isolate it. A demodulator then recovers the
information (e.g. voice, music, etc.) and an audio amplifier drives a speaker. Every change to that radio’s
behavior lives in the physical circuits that make up the radio; if you want a different filter or new modulation
type, then the hardware must be redesigned.

Software-Defined Radio

A software-defined radio (SDR) keeps only the minimum analog front end and moves everything else into
code running on a computer. An analog-to-digital converter (ADC) samples, or measures, the RF signal and
turns it into a stream of numbers that can be processed with computers. Tuning, filtering, demodulation,
even entire modulation schemes become algorithms that operate on those samples. If you want to change
how the radio operates, all you have to do is update the software/algorithm. GNU Radio is a software that
allows you to easily build digital signal processing (DSP) systems by connecting together signal processing
blocks into a flowgraph.

In this lab we’ll take one more step by keeping the whole radio link inside the computer. Instead of sampling a
real RF signal, we generate and process it entirely in software. The “transmitter”, “channel”, and “receiver”
are just connected GNU Radio blocks, so nothing is radiated and no hardware needs wiring. The only
physical interfaces you’ll need are you computer’s audio devices, e.g. microphone in, headphones out.

2 GNU Radio Flowgraphs

Default rates: audio_rate = 48000, samp_rate = 192000 Start deviation: nbfm deviation = 5000 Hz

Overview of the two-graph setup (ZMQ)

You will run two separate GNU Radio flowgraphs linked by ZeroMQ (ZMQ) at complex baseband. The
transmitter (TX) generates NBFM from your microphone and pushes complex IQ samples over the network;
the receiver (RX) pulls those samples, optionally adds impairments, demodulates, and plays audio.

TX flowgraph (block order)

Audio Source — Multiply Const (mic gain) — NBFM Transmit — ZMQ PUSH Sink

Settings: Audio Rate = 48000; Quadrature Rate = 192000; Max Deviation = 2000-7000 Hz; Tau = 0 us (base
lab). In ZMQ PUSH Sink set Bind = On, Address = tcp://*:PORT (e.g. tcp://*:6001), High-Water-Mark
(HWM) = 25, Linger = 0. Do not use a Throttle block on TX when using ZMQ.

RX flowgraph (block order)

ZMQ PULL Source — Channel Model (optional) — NBFM Receive — Multiply Const (volume) — Audio
Sink

Settings: Quadrature Rate = 192000; Audio Rate = 48000; Tau = 0 us. In ZMQ PULL Source set Bind =
Off, Address = tcp://TX_IP:PORT (e.g. tcp://192.168.1.50:6001), HWM = 25.

Required variables (both graphs)
audio rate = 48000 samp rate = 192000 port = 6001 (unique per pair)
TX Address: tcp://*:${port} RX Address: tcp://TX_IP:${port}

Instructions for use

Same-machine dry run Start the TX graph first with Address tcp://*:6001 and Bind = On. Start
the RX graph on the same machine with Address tcp://127.0.0.1:6001 and Bind = Off. Speak into the
mic; you should hear your voice with a small delay. If you have a frequency sink on RX, you should see
energy centered at 0 Hz that responds to speech.

Two-computer run Choose a unique port per team (e.g. 6001, 6002, ...). On TX, run with Bind = On
and Address tcp://*:PORT. Determine the TX IP address (Windows: ipconfig; macOS/Linux: ifconfig
or ip addr). On RX, set Address tcp://TX_IP:PORT with Bind = Off, then run RX. Wear headphones on
RX.

Bring-up checklist (Checkpoint A)
Audio heard on RX RF spectrum active at 0 Hz (if plotted) Audio waveform visible (if plotted)

If silent: verify matching sample rates (48 k/192 k), TX binds and RX connects to the correct IP:PORT,
and OS firewalls allow Python on that port. Set mic gain and volume near 1.0-2.0.

B. Deviation vs. bandwidth (Carson)

Goal. Measure occupied bandwidth vs. deviation Af and compare to B ~ 2(Af + 3 kHz).

Set TX Max Deviation to 3, 5, and 7, one at a time. On RX, enable averaging in the frequency sink (if
present). While speaking steadily, estimate the main-lobe width down to roughly —20 dB.

Af (kHz) Measured BW (kHz) Carson 2(Af + 3) (kHz) Notes
3 - 12
) — 16
7 20

B1 (1-2 sentences). Does measured bandwidth grow approximately linearly with Af? If it differs from
Carson, give one plausible reason (measurement threshold, speech spectrum, etc.).

Screenshots. Capture RF spectra for one low-A f and one high-A f case; label each with Af.

2 FEarwicker et al. 2025

C. Mic gain and apparent over-deviation

Goal. Show how excessive input level widens the spectrum and degrades audio.
Sweep TX mic gain from = 0.5 to 3.0 while keeping voice level constant. Listen for distortion and watch
spectral shoulders widen even if Af is unchanged.

C1 (1-2 sentences). Why can too much mic gain look like larger Af in the spectrum? What trade-off
did you hear?

D. Noise robustness

Goal. Observe FM’s gradual degradation with noise.

On RX, set Channel Model Noise Voltage to 0.00, 0.01, then 0.02. For each, note intelligibility and how the
spectrum fattens. Optionally, insert a Power Squelch (Complex) before NBFM Receive (threshold ~ —60 dB,
a = 1074, Gate = True) and toggle it.

D1 (2—-3 sentences). At what noise level did speech become hard to follow? Why does FM fail gradually
rather than abruptly?

Screenshot. Capture an RF spectrum at your “noisy” setting; label with the Noise Voltage.

E. Carrier-frequency offset (CFO) tolerance

Goal. Explore mistuning tolerance.

On RX, set Channel Model Frequency Offset to 0, +200 Hz, —200 Hz, then 4800 Hz. Note when audio
becomes warbly or collapses.

E1 (1-2 sentences). Why is small CFO tolerable in FM? What finally breaks as CFO increases?

Options
- L : Variable Variable Variable Variable QT GUI Range
Title: Narrowba... Transmitter di bfm_deviati s ID: mic_gain
Author: ARISE -...1 Institute ID: samp_rate ID: audio_rate ID: nbfm_deviation ID: fft_size d _s .
Value: 192k Value: 48k Value: 5k Value: 4.096k Label: Microphone Gain
Output Language: Python

Default Value: 1

Generate Options: QT GUI Start: 0

Stop: 1
Step: 50m

o Channel Model
NBFM Transmit Noise Voltage: 0

Audio Rate: 48k B et 0
Quadrature Rate: 192k req Y :

M Tau: 75u |oi—>1| Epsiton: 1

Max Deviation: 5k Taps: 1

Seed: 0
Pi hasis High Freq: -1
CEERIEE G I] Block Tag Propagation: No

ZMQ PUSH Sink
Address: tcp://127.0.0.1:6001
Timeout (msec): 100

Pass Tags: No
Connection: Bind

Audio Source mm p| Multiply Const pmm
Sample Rate: 48k Constant: 1

QT GUI Time Sink
Name: Raw Microphone Audio
Number of Points: 4.096k
Sample Rate: 192k
Autoscale: No

QT GUI Frequency Sink
Name: Transmit Spectrum
FFT Size: 4.096k

Center Frequency (Hz): 0
Bandwidth (Hz): 192k

Figure 1: NBFM_Virtual Transmitter.grc GNU Radio flowgraph.

3 FEarwicker et al. 2025

. OPtlons Variable Variable Variable Variable QT GUI Range
Title: Not titled yet ID: samp_rate | | ID: audio_rate 1ID: nbfm_deviation 1D: fft_size ID: volume
Author: jtear Value: 192k Value: 48k Value: 5k Value: 4.096k Label: Volume
Output Langt{agef Python Default Value: 1
Generate Options: QT GUI Start: 0
Stop: 1
Step: 50m
ZMQ PULL Source NBFM Receive
Address: tcp://127.0.0.1:6001 Audio Rate: 48k . S
) Multiply Const Audio Sink
Timeout (msec): 100 H Quadrature Rate: 192k Sample Rate: 48k
Pass Tags: No Tau: 75u

Connection: Connect Max Deviation: 5k

QT GUI Frequency Sink
Name: Receive Spectrum
FFT Size: 4.096k

Center Frequency (Hz): 0
Bandwidth (Hz): 48k

Figure 2: NBFM_Virtual Receiver.grc GNU Radio flowgraph.

4 FEarwicker et al. 2025

	Introduction
	GNU Radio Flowgraphs

